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STABILITY CRITERIA FOR DIFFERENCE APPROXIMATIONS TO HYPERBOLIC
SYSTEMS, AND MULTIPLICATIVITY OF MATRIX AND OPERATOR

Principal Investigator: Moshe Goldberg

ABSTRACT

Research completed under Grant AFOSR -83-0150 by Moshe
Goldberg consists of the following two topics:

9-(a)Convenient stability criteria for difference approximations to
hyperbolic initial-boundary value problems. 4, -' -)

_ _ _ _ _ --

-j-Muftiplicativity and stability of matrix and operator norms.

/ /.-. -, .,
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STABILITY CRITERIA FOR DIFFERENCE APPROXIMATIONS TO HYPERBOLIC
SYSTEMS, AND MULTIPMCATIVrTY OF MATRIX AND OPERATOR

Principal Investigator: Moshe Goldberg

1. Convenient Stability Criteria for Difference Approximations to Hyperbolic
Initial-Boundary Value Problems

Consider the first order system of hyperbolic partial differential equations

a u(x,t)/ot = Aau(xt)/x + Bu(x,t) +f(xt), x>0, t>0, (1.1a)

where u(x,t) = (u(i)(x,t), ..., u(n)(x,t))' is the unknown vector (prime denoting the

transpose), f(x,t) , (f(')(x,t), ... , fn)(x,t))' is a given n-vector, and A and B are
fixed n x n matrices such that A is diagonal of the form

A 0 I  A
S0 A" A <o, (1.2)

with A' and All of orders k x k and (n - k) x (n - k), respectively.

The solution of (1.1a) is uniquely determined if we prescribe initial values

u(x,0) W i(x), x>0, (1.1b)

and boundary conditions

u (0,t) = Su (0,t) + g(t), t>0, (1.1c)

where S Is a fixed (n - k) x k coupling matrix, g(t) a given (n - k)-vector, and
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I (k) 11 k+ 1) N,
u =(u ... u ) U ... , u) (1.3)

a partition of u into its outflow and inflow components, respectively,
corresponding to the partition of A in (1.2).

In the past five years, E. Tadmor and I [22-24] extended our previous results
in [19,20] to achieve versatile, easily checkable stability criteria for a wide class
of finite difference approximations to the above initial-boundary value problem.

More specifically, introducing a mesh size Ax > 0, At > 0, such that X = At/Ax
= constant, and using the notation v(t) = v(vAx,t), we approximated (1.Ia) by a

general, basic difference scheme -- explicit or implicit, dissipative or not, two-
level or multilevel -- of the form

QjlV(t + At) aQv(t- At) + Atb(t), v =r, r + 1

(1.4)

A _, Ev = v , s.
-a V V+1

where the n x n coefficient matrices Aja are polynomials in XA and AtB, and the

n-vectors bv(t) depend on f(x,t) and its derivatives.

The difference equations in (1.4) have a unique solution vv(t + At) if we
provide initial values

v(PAt) - v(ILAt), R = 0, ... s, v = 0, 1,2,..., (1.5)

and specify, at each time level t = gAt, ; = s, s + 1, ... , boundary values
v(t + At), v - 0, ..., r - 1. Such boundary values are determined by boundary

conditions of the form

, = l I' I F ' I I I5



T Vv(t+At) = j Tv (t- (At) +,Atd (t), v - 0, ..., r- 1,

(1.6a)
"rIV) - ± v)EJ, c =-l -1 , ... ,.q

a jo )

where the n x n matrices C M depend on A, AtB and S; and the n-vectors d M

are functions of f(x,t), g(t) and their derivatives.

Our intention was to interpret the difficult and often stubborn Gustafsson-
Kreiss-Sundstr~m (GKS) stability criterion in (26] in order to obtain simple and
convenient stability criteria for approximation (1.4) - (1.6a). While we were
unable to meet this goal for general boundary conditions of type (1.6a), we
managed to achieve rather satisfactory results under the further assumption

that, in accordance with the partition of A in (1.2), the CM can be written as

[ 11CI IV
C = [ icy ic (1.6b)

la C av jo

where

the C" are independent of v, (1.6c)

the are diagonal when B = 0, (1.6d)

the C' "M(v = 0 when B = 0, (1.6e)Io

C. i ,(V)= 0 for j>0 and a>-1 when B = 0. (1.6f)
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The essence of (1.6c)-(1.6e) is that for B - 0, the outflow boundary
conditions are translatory (i.e., determined at all boundary points by the same
coefficients), separable (i.e., split into independent scalar conditions for the
different outflow unknowns), and independent of outflow values. Assumption
(1.6f) implies that for B - 0, the inflow values at the boundary depend essentially
on the outflow.

It should be pointed out that our outflow boundary conditions are quite
general, despite the apparent restrictions in (1.6c)-(1.6e). Indeed, (1.6c) is not
much of a restriction, since in practice the outflow boundary conditions are
translatory. In particular, if the numerical boundary consists of a single point,
then the boundary conditions are translatory by definition, so (1.6c) holds
automatically. The restrictions in (1.6d), (1.6e) pose no great difficulties either,
since they are satisfied by all reasonable boundary conditions, where for B = 0

1I 1 1 11(V)the C! usually reduce to polynomials in the diagonal block A, and the C )Jo 1
vanish.

We realize that in view of the restriction in (1.6f) our inflow boundary
conditions are not quite as general as the outflow ones. They can, however, be
constructed to any degree of accuracy (see [20]); and if the boundary consists of
a single point, then such conditions can be achieved in a trivial manner, simply
by duplicating the analytic condition (1 .lc), which gives

vO(t + At) - SVo(t + At) + g(t + At).

Throughout our work we assume, of course, that the basic scheme (1.4) is
stable for the pure Cauchy problem, and that the other assumptions which
guarantee the validity of the GKS theory in [26], hold.

The first step in our analysis was to reduce the above stability question to
that of a scalar, homogeneous problem. This is obtained by considering the
outflow scalar equation

au/t - ao-uQx, x > 0, t > 0, a = constant > 0, (1.7)

for which the basic scheme (1.4) reduces to the homogeneous scheme

L



-1v (t +At) = T v (t- aAt)
0-0 

(1.8a)
a El ' rS

and the boundary conditions (1.6) reduce to translatory conditions of the form

TlV (t + At) ± ' T v (t - at)

O o (1.8b)
m2

T=X = -1 .... q,
r-O0

where a and c. are scalar coefficients.
o Jo

Referring to (1.8) as the basic approximation, we proved:

Theorem 1.1 [24]. Approximation (1.4)-(1.6) is stable if and only if the
reduced outflow scalar approximation (1.8) is stable for every eigenvalue

a > 0 of A'. That is, approximation (1.4)-(1.6) is stable if and only if the
scalar outflow components of its principal part are all stable.

This reduction theorem implies that from now on we may restrict our stability
study to the basic approximation (1.8).

In order to introduce our stability criteria for the basic approximation, we use
the coefficients of the basic scheme (1.8a) to define the basic characteristic
function

P(Z,) ,,_..,- ja. z

8
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Similarly, using the coefficients of the boundary conditions in (1.8b) we define
the boundary characteristic function

R(z,ic) = [9.-1 - ja
j .o 0.0

Now putting

Q(z,ic) a I P(z,c) + I R(z,ic) ,

we proved:

Theorem 1.2 [20]. The basic approximation (1.8) is stable if Q(z,C) > 0 for
all

SIzl =lCI 1, (z,c) (1,l)}, lzll, 0<I <1c . (1.9)

In fact, we often found it convenient to divide the (z,ic) domain in (1.9) into

three disjoint parts, and restate Theorem 1.2 as follows:

Theorem 1.2'. Approximation (1.8) is stable if

Q(z,K)>o foralI Iz I1I = 1, ic * 1, (1.1Oa)

fl(z,K-1)>0 forall IzI = 1, z * 1, (1.10b)

Q(z,ic) >0 forall Izll:1, 0<JIc<1. (1.1Oc)

The advantage of this setting over that of Theorem 1.2 is clarified by the
following lemma, in which we provide helpful sufficient conditions for each of
the three inequalities in (1.10) to hold:
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Lemma 1.3 [24].
(i) Inequality (1.1 0a) holds if either the basic scheme (1.8a) or the

boundary conditions (1.8b) are dissipative.
(ii) Inequality (1.1 Ob) holds if any of the following is satisfied:

(a) The basic scheme is two-level.
(b) The basic scheme is three-level and

Q(z - -1,1C = 1) > 0. (1.11)

(c) The boundary conditions are two-level and at least zero-order
accurate as an approximation to equation (1.7).

(d) The boundary conditions are three-level, at least zero-order
accurate, and (1.11 ) is satisfied.

(iii) Inequality (1.10c) holds if the boundary conditions fulfill the von
Neumann condition, and are either explicit or satisfy

T, (10 ,, j 9..1  0 V 0 <1C :<1.

j-0

We note that if both the basic scheme and the boundary conditions are

unitary (i.e., strictly nondissipative), then Q(z = -1 ,ic = -1) = 0; hence Theorem
1.2 is rendered useless. For such cases we proved

Theorem 1.4 [24]. Approximation (1.8)is stable if

aP(z,) oP(z,IC) <
Z K IZK,-1

and f(z,ic) > 0 for all

{ Izl - lI -1, (z,C) * ±(1,1)} l(IzI1, 0<I Kl1<}

The above lemma applies to this theorem precisely in the same way it
applied to Theorem 1.2.
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The stability criteria obtained in Theorems 1.2 and 1.4 depend both on the
basic difference scheme and on the boundary conditions, but not on the
intricate and often complicated interaction between the two. Consequently,
Theorems 1.2 and 1.4, aided by Lemma 1.3, provide in many cases a
convenient alternative to the celebrated stability criteria of Kreiss [31] and of
Gustafsson, Kreiss and Sundstr~m [26].

Having the new criteria, we easily established stability for a host of examples
that incorporate and generalize most of the cases studied in recent literature;
e.g., [4, 5, 19, 20, 22-27, 30, 32, 38, 39, 42- 44, 47, 50]. To mention just a few of
our examples, we proved stability for:

(a) Arbitrary two-level schemes, with boundary conditions generated by
either the explicit or implicit one-sided Euler schemes.

(b) Arbitrary two-level schemes, with boundary conditions generated by
either horizontal extrapolation or by the one-sided three-level Euler
scheme.

(c) Arbitrary dissipative schemes, with boundary condition generated by
oblique extrapolation or by the Box scheme.

(d) The Crank-Nicolson, Backward-Euler, Leap-Frog and Lax-Friedrichs
schemes (all nondissipative), with boundary conditions generated by
either oblique extrapolat-ve or by the one-sided Weighted Euler
scheme.

We drew great satisfaction from the fact that our theory and examples in [19,
20, 22-241 were used already by a number of authors, including Berger (2],
LeVeque [34], South, Hafez and Gottlieb [45], Thun6 [49], Trefethen [50, 51],
and Yee [53]. Thun6 [49], in his effort to provide a software package for stability
analysis of finite difference approximations to hyperbolic initial-boundary value
problems, says: "...Another approach has been to derive new criteria, based on
the Gustafsson-Kreiss-Sundstrdm theory but more convenient for practical use...
The most far-reaching work along these lines has been made by Goldberg and
Tadmor [19, 20, 221 ..."

We were also pleased to learn that part of our theory in [24] was taught

already in several institutions including UCLA and the University of Paris VI.
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2. Muttlplicativity and Stability of Matrix and Operator Norms

Let V be a normed vector space over the complex field C, and let S(V) be the
algebra of bounded linear operators on V. As usual, a real-valued function

N : B(V) -+R

is called a norm on B(V) if for all A, B e B(V) and a e C,

N(A) > 0, A#0,

N(A A) = I ac I- N(A),

N(A + B) < N(A) + N(B).

If in addition N is multiplicative, i.e.,

N(AB) :5 N(A) N(B) V A, B e (V),

we say that N is an operator norm on ,(V). If !B(V) is an algebra of (finite)
matrices and N is multiplicative, then N is called a matrix norm.

The first multiplicative example that comes to mind isof course, the ordinary
operator norm

1il sup ,Ax• xe V, lxi = 1, (2.1)

where • I is the vector norm on V.

If V is a (finite- or infinite-dimensional) Hilbert space, then perhaps the best
known example of a nonmultiplicative norm on B(V) is the numerical radius
(e.g., [1, 6, 21,28, 41])

r(A) - sup{I(Ax, x)" xeV, Ixi - (x,x)"l = 1} (2.2)
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which plays an important role in stability analysis of finite difference schemes for
multi-space-dimensional hyperbolic initial-value problems [21, 33, 35, 52].

Another example of considerable interest is the I norm, 1 < p :5 -, of an

n x n complex matrix A - ( Cnxn"

n "p
I Alp( ci iIP) (2.3)

Ostrowski [40] has shown that this norm Is multiplicative (i.e., a matrix norm) if
and only if 1 < p: <2.

Given a norm N on O(V) and a fixed constant g > 0, then obviously N = a±N is

a norm too. Clearly, NP may or may not be multiplicative. If it is, then we call g. a

multiplicativity factorfor N. That is, I. is a multiplicativity factor for N if and only if

N(AB) < IXN(A)N(B) V A, B e B(V).

Having this definition one can obtain at once:

Theorem 2.1 [36, 15]. Let N be a norm on !B(V). Then

(i) N has multiplicativity factors if and only if

amin sup(N(AB) : N(A) - N(B) - 1; A,B E BV)} < o. (2.4)

(ii) if A min < ., then p is a multiplicatiity factor for N if and only if g. > g min

In the finite-dimensional case, compactness immediately implies that

m min < - ; hence N always has multiplicativity factors. In the infinite-

dimensional case, however, N may fail to have multiplicativity factors, as was
demonstrated by Straus and myself in (151.

13
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While Theorem 2.1 seems to settle the question of characterizing

multiplicativity factors, the quantity pmin in (2.4) is often difficult to compute. A

more practical approach towards verifying whether a constant g min > 0 is the

best (least) multiplicativity factor for a given norm N is implied by the following
obvious observation:

A constant Amin > 0 is the best (least) multiplicativity factor for N if

N(AB) s gmm N(A)N(B) V A, B e B(V),

with equality for some nonzero A - Ao, B = Bo.

With this observation in mind, it was shown by Holbrook [29] (and
independently by Straus and myself in [13]) that if V is a Hilbert space of

dimension at least 2, and if r is the numerical radius defined in (2.2), then Ar is

an operator norm on B(V) if and only if g 2 4; i.e., the best multiplicativity factor

for r ispm =4.

Similarly, Maitre [36], and Straus and I [17] showed that the best
multiplicativity factor for the t norm on C defined in (2.3) is

1, 1 sp2,

mi n1 "2 , 2 p<.

Often, when p min remains unknown, one may obtain multiplicativity factors

via the following somewhat stronger version of a result by Gastinel:

Theorem 2.2 [3, 13]. Let N and M be a norm and an operator norm on

B,(V), respectively; and let il z> 0 be constants such that

4M(A):<N(A)ri M(A) V A e B(V).

Then any i with I k 1/42 is a muftiplicativity factor for N.

14



This result was utilized by Straus and myself [13-16, 18] to obtain
multiplicativity factors for certain generalizations of the numerical radius, called
C-numerical radii.

The above concepts of multiplicativity and multiplicativity-factors were
extended by me in 1983 as follows:

Definition 1. Let U, V, and W be normed vector spaces over C; and let
o8120(U, W), 02= .B(V, W), and; s3-B(U, V) be the spaces of bounded linear
operators from U into W, V into W, and U into V, respectively. If N, IN 2f andN3
are norms on 'B,, !32, and 'B., respectively, and gp> 0 is a constant such that

N, (AB) 5 j±N2(A) N3(B) V A e;0, B

then we say that IL is a multiplicativity factor for Ni with respect to N 2 and N 3'

In analogy with Theorem 2.1 we have now:

Theorem 2.3 [11 ]. Let N1, N 2, and N3 be norms as in Definition 1. Then:
(i) Ni has mulp/icativity factors with respect to N 2 and N 3 if ad onlyif

Rmjfl aSUP{N,(AB) : N2(A) = N3(B) = 1 ; A e B2, B e B3 }<0.

(ii) If A mi <, then A is a multiplicativity factor for N 1 with respect to N 2
and N 3, if and ony if : i in

We observe, of course, that a constant g i > 0 is the best (least)
multiplicativty factor for N Iwith resetoN 2 adN3 i

N, (AB) 5 gpinN2(A)N3(B) V A e !R2, Be 6

with equaity for some nonze ro A w A0, B - B 0.



For example, if V is a Hilbert space, and if I jand r are the operator norm

and numerical radius in (2.1) and (2.2), then Holbrook [29] has shown that

r(AB) :5 2r(A)II B 11 V A, B eBV)

with equality for certain A - A0, B -B.. Thus, A .i - 2 is the best multiplicativity

factor for r with respect to r and j

This example employs only a single vector space and two norms. In order to
demonstrate the idea of mixed multiplicativity to its full extent, consider, for
1 :5p! ,h norm of an mx nmatrixA -(a 4 )r Cxn

JAI (2.5)

Defining

(1p pq
;Lp(M) Up -llI/ q~

I proved:

Theorem 2.4 [9]. Let p, q, r satisfy 1 :5 p, q, r r ., and let q' be the
conjugate of q (i.e., 1/q + 1/q' a 1). Then the best multiplicativity factor for the
I norm on Cmx with respect to the Inorm on Cm and the Inorm on
C kxnis

Amin - ;Lpq$m) Xp(n) Xq-r(k).

16



That is, for all A e Cmxk andB e Ckx n

I AB Ip Pk.pq(m) .pr(n))Xq.r(k) I AIq I B Ir (2.6)

where this inequality is sharp.

Theorem 2.4 (which generalizes some of the results in [7,8]) has quite a few
applications. For example (see [9, 12]), taking (2.6) with m = n = 1, we get an

upper bound for the standard inner product (x, y) on Cn in terms of I x I and

I Y Iq; and if we further set r - q' we obtain the classical Holder inequality.

Another application of Theorem 2.4 concerns the "ordinary" operator-norm
on C

mxn

11AIlP = sup{IAxIp x C n, Ixp= 1, (2.7)

for which I proved:

Theorem 2.5 [11]. Let p, q, r satisfy 1 < p, q, r, <5 . Then for all
Ae Cmxk, Be Ckx,

II AB 11 <  .pq(m) Xqp(k) X .(k) XrP(n) II A liq II B ]lr

where the inequality is sharp if either q :9 p < r or r < p ! q.

Another consequence of (2.6) describes the equivalence relation between
the norms in (2.5) and (2.7):

Theorem 2.6 [10]. Let p, q satisfy 1 : p, q < @,, and let q' be the conjugate
of q. Then for all A e Cm x n'

17



I A IX < pq(mn)l A Iq'

II A li5 X p.(m) X.p(n) II A IIq

II A liP 5 Xpq(m) Xqp(n) I A Iq

JI p : (mn) Il 1 A lIq,

where the first three inequalities are sharp.

Having the above results, it should be possible to construct a complete table
of best (least) multiplicativity factors and equivalence constants for r, Ip and

11 lip , as well as for other useful norms such as the Householder norms

described in [47].
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Research of Marvin Marcus

1983-1988

L Introduction

This report covers the research of Marvin Marcus for the period May 1, 1983 -
April 30, 1988 sponsored by the Air Force Office of Scientific Research, grant
number AFOSR-83-01 50.

The sequel is separated into the following sections:

II. General Area of Research
This section contains: an exposition of the basic mathematical theory of the finite dimensional

numerical range; a description of two algorithms that permit effective visualization of the

structure of the numerical range; an example of the implementation of algorithms for
visualizing the numerical range and how these can be used to refute or substantiate important

conjectures; a list of continuing problems currently under investigation.

Ill. Research of M. Marcus, 1983 - 1988
This section contains a list of the publications completed by M. Marcus In the period 1983-
1988 with short summaries of their contents. At the end of the section is the result of a

computer search of the Science Citation Index which contains the total number of references

to the work of M. Marcus since 1983. Self references have been excluded in the search

criteria. This data provides some quantitative information of the extent to which the research
of M. Marcus has been used by other investigators working in the general area of aoplied and

numerical linear aloebra.

IV. Numerical Range Bibliography
This Is a preliminary version of a bibliography of 779 citations covering the numerical range. It

has been sorted alphabetically by first author. All references in this report refer to the

RlbflggrapbyU. We are currently In the process of identifying the Mathematical Reviews
numbers and preparing brief summaries of each of the papers. In view of the very large

number of citations, this latter project will probably take several months to complete, and will

be Incorporated as part of the report on the current grant, AFOSR-88-01 75.

V. Appendix
The appendix contains the vita and publication list of Marvin Marcus.
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L General Area of Research

Let V be an n-dimensional unitary space and let A be a linear transformation,
A: V -+ V. The numerical range, or field.of yau. of A is the set of complex
numbers

W(A) - ((Ax, x) lixi1 = 1). (1)

The numerical radius of A, w(A), is the maximum distance of any point in W(A)
from the origin. By choosing an orthonormal (o.n.) basis of V, and replacing the
inner product in V by the standard inner product in the space of complex column
n-tuples, the computation of W(A) is reduced to an equivalent matrix problem.
Thus we assume that A is an n-square complex matrix and that the inner
product of two column n-tuples (n-vectors) is

n
(x, y) = Xky k  (2)

k-1

Elementary results concerning W(A) were known in the last century [165], [398]
and in the first decade of this century [69], [317]. These early results were
usually formulated in terms of bounding rectangles for the spectrum of A, G(A),
which were, in fact, containment rectangles for W(A). However, it was not until
1918 and 1919 that the first important results conceming.W(A) were proved by
Hausdorff and Toeplitz.

It is a classical result due to Hausdorff [309] and Toeplitz [712] that the
numerical range, W(A), is a convex set. Many proofs of this interesting result
have appeared in the intervening years since the original Hausdorff-Toeplitz
theorem was published. Most of these (e.g., see [281]) depend on reducing the
problem to the computation of the numerical range of a 2-square matrix.

There have been a number of interesting papers on geometric properties of the
numerical range and their relation to the similarity invariants of A (e.g. [729],
[41], [175], [213], [351], [376], [728], [561], [144], [154], [184], [497], [583]). From
a numerical standpoint, the numerical range arises in many contexts: the
constrained eigenvalue problem [388]; the theory of small vibrations [47], [48];
Tchebychev iteration for linear systems [446]. Much of the interest in the
numerical range of a matrix A is motivated by the fact that it is a containment
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region for the spectrum of A. In fact, for normal A, W(A) is the convex hull of the
spectrum of A. It might be conjectured that this geometric property of W(A) is
equivalent to A being normal. In fact, M. Marcus and B.N. Moyls [527] showed
that for n :9 4 this Is indeed the case, but for n > 4 it is not. This result led to a
sequence of related papers [19], [216], [29], [30], [463], [474], (486] and the
Introduction of a class of operators called c.

The numerical range of any linear operator is the union of the numerical ranges
all 2-dimensional real compressions of A. This fact is the basis for the first
algorithm described below. If 1 < k < n and P is a k-dimensional orthogonal
projection, then the restriction of PAP to the range of P is called a k-dimensional
compression of A. For k = 2 and A an n-square complex matrix, a 2-
dimensional real orthogonal compression of A is the 2-square matrix

[(Ax, x) (Av,x) 1
[(Ax, v) (Av, v) " (3)

where x and v are real o.n. column n-tuples.

The following are well known properties of the numerical range. The set W(A) is
unitarily invariant and is identical with the set of all diagonal elements
appearing in all unitary transforms of A (i.e., in all matrices unitarily similar to A).
The numerical range of every principal submatrix of A is a subset of the
numerical range of A. If A = B @ C then W(A) - H(W(B) u W(C)). (H denotes the
convex hull.) The set W(A) is a closed bounded convex region of the plane
containing a(A), the spectrum of A, i.e., containing X " n" , the eigenvalues of

A. Since W(A) is convex, it also contains

P(A) w H(X 1, ... , ). (4)

If A is normal then W(A) = P(A). This last result implies that if A is normal then
the extreme points of W(A) are eigenvalues. If W(A) = { ). } then A = XI and if

W(A) r. IR then A = A*, i.e., A is hermitian.

If n -2, then W(A) is an ellipse with foci the eigenvalues of A; if A has the form
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0 )L

then the length of the semi-minor axis of the ellipse is I a 1/2. The precise
equation for the boundary of the numerical range of a non-normal matrix for
n 2 2 has been given by Murnaghan [528] and, in more explicit form, by
Kippenhahn [376]. Kippenhahn also gives bounds for the diameter of W(A). M.
Feidler obtained [213] an equation for the boundary of W(A).

Since the numerical range contains the spectrum of A it is of considerable
importance from the standpoint of eigenvalue localization. In fact, this was the
starting point for a number of papers on classical eigenvalue localization theory
including work by W.V. Parker [554], [556] and A.B. Famell [206], [208].

P. Henrici [312] related the distance between the boundary of W(A) and P(A)
with a measure of the departure of A from normality.

In a paper written in 1952 [254] W. Givens defined for A e Mn(C ) the following

set:

(HAxx)
FH(A) = (Hx, x) " xeC , H p.d.

Givens proved that if H is p.d. (positive define hermitian), H = T*T, then FH(A) =

W(TAT -1). He also showed that if A has an elementary divisor of degree at least
2 associated with the root X, then X, is an interior point of FH(A) for every p.d. H.

An immediate consequence of this last result is that if X is an eigenvalue on the
boundary of W(A) then X occurs only in linear elementary divisors. Givens'
main result was

P(A) - n FH(A).
H p.d.

He also showed that a necessary and sufficient condition that FH(A) = P(A) for
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some p.d. H is that the elementary divisors corresponding to roots on the
boundary of P(A) are all linear. Givens' results suggest that for an appropriate
choice of H one might obtain information about the eigenvalues of A,
particularly those on the boundary of P(A), from properties of the numerical
range.

In [175] W.F. Donoghue proved that every non-differentiable boundary point of
W(A) is an eigenvalue of A.

0. Taussky [690] has shown that if A * 0 and tr(A) - 0 then 0 is in the interior of
W(A).

A result of C.R. Putnam [580] states that if C = AB - BA then 0 is in the interior of
W(C).

Ballantine [41] has presented a series of algorithms to determine for a given
complex number z and a given A e Mn(C) whether or not z is in W(A), z is a

boundary point of W(A), or z is an extreme point of W(A).

In a paper written in 1963 [457] M. Marcus and R.C. Thompson examined the
numerical range of the Hadamard product A * B of two matrices. They showed
that if A and B are normal and oaI, ..., (x and f1 n n are the eigenvalues of A

and B respectively then W(A * B) is a subset of the convex polygon spanned by
(aip + a I§ )/2, 1 < i < j < n. This result was used to yield localization theorems

for permanents and determinants.

T. Sait6 [6001 considered the question: When is the relation W(A 0 B) =
H(W(A)W(B)) valid? In a particular answer to this question he proved that if
W(A ® B) - H(c(A 0 B)) then the above equality holds. He also showed that in
general H(W(A)W(B)) g. W(A 0 B) but that there exist A and B for which the
inclusion is strict.

in a series of papers [348], [3491, [351A], [356] Johnson examined various
inclusion relations involving W(A). In [351], for n = 2, he determined the major
and minor axes of the ellipse W(A) in terms of the entries of A when A is real.
He then utilized this result to determine
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S(A) - H(U W(A[ i, j i, j])

for A n-square real and showed that S(A) c W(A).

In [354], [3531 Johnson studied the Hadamard product A * B of A and B (A * B =

[abi]). He proved that if A e Mn(C) and for some 0 <0 :5 2x, eiGH is p.d. then

W(H 0 A) = W(H)W(A). Furthermore, if A E Mn(C) and N e Mm(C) is normal

then W(N D A) c H(W(N)W(A)). A corollary: if N and A are in Mn(C) and N is

normal, then W(N * A) c H(W(N)W(A)); if further N is p.d. then W(N • A)
W(N)W(A).

Since the effective visualization of the set W(A) has been an important part of
this research it is important to be aware that several algorithms exist for
graphing the convex hull of a set of points. Sedgewick describes the

implementation of the oackaoe wra.oing algorithm in [Algorithms, 2nd ed.,
Robert Sedgewick, Addison Wesley, 1988] which is not unrelated to one of the
algorithms developed below to visualize the numerical range:

1. Find the point with the least y coordinate.
2. Imagine a horizontal line through this point.
3. Sweep that horizontal line through a positive angle 0 until it intersects with

another point.
4. Add that point to the boundary of the convex hull.
5. If the new point is not the starting point, goto step 2.

Obviously this algorithm is suitable for finite sets of points only.

To visualize the numerical range it is required to graph its boundary. In the
second algorithm described below, an effective means of computating the
boundary of W(A) is described.

The mathematical results at the basis for the visualization algorithms will be
discussed next. Let A e Mn(0 ) , let B be any principal submatrix of A and let U

e Mn(C) be any unitary matrix. Also let a(A) denote the spectrum of A, i.e., O(A)

is the set of all eigenvalues of A. Then
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W(cA) = cW(A), (5)
W(cl n + A) c+ W(A), (6)

W(A*) - W(A), (7)

W(B) c W(A), (8)

W(U*AU) - W(A), (9)

W(A) cIR iff A is hermitian, (10)

W(A) a iR iff A is skew-hermitian, (11)

W(A) -{ 0) iff A - 0, (12)

o(A) c W(A), (13)
W(A) = {c}iffA=cl n. (14)

The following theorem, known as the elliptical range theorem, completely

describes the structure of W(A) for A e M2(C). It is the basis for proving the fact

that W(A) is always convex, the most important theorem about the numerical
range. It is also the basis of an effective visualization algorithm.

Theorem 1. Let A e M2(C) with eigenvalues X and gL. Define the following

numbers associated with A:

1/2
V , 1 2(5

a (v2 IX12 2I (16)

Then W(A) is an elliptical region bounded by an ellipse (possibly degenerate)
whose description is as follows:

foci: X. g; (17)

(2 - 2e )1/2
semi-major axis: (v -2 e -) (18)

semi-minor axis: - (19)
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An important result proved in [4891 is contained in

Theorem 2. Let A be an n-square complex matrix. Then W(A) is the union of all
the sets

W(Axv) (20)

as x and v run over all pairs of o.n. vectors in Mn 1 (R).

From a computational standpoint it is important to note that although W(A)

consists of complex numbers of the form y*Ay, y e Mn1 (C), it is nevertheless
the case that only Leal x and v are required in (20).

We can state the following useful result for computing the numerical radius of a
2 x 2 matrix.

Theorem 3. Let A be unitarily similar to

0 :I, a 0. (21)

For s [0, 1]define the function

d(s)= s + (1- s).I + a is(1- s) (22)

then

w(A) = max d(s) (23)

where the max in (23) is computed for s • [0, 1].

For matrices A e M2(C) which are unitadly similar to a real matrix it is possible

to give an explicit formula for w(A) in terms of the entries of A. In the following
theorem, w(A) is explicitly exhibited in terms of the entries in the upper
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triangular form of A for a 2-square matrix. This result is useful for determining

an approximation from below for the numerical radius of an arbitrary A.

Theorem 4. If A e M2(C), upper triangular,

A a;> 0,0 A

and if A is unitarily similar to a real matrix then the numerical radius w(A) can be
determined as follows:

I. . and g are real. Then w(A) is the larger of the two numbers

I. + A± R)2 + a21
2

II. X. and g are complex conjugates: X = h + ik,= h - ik, k * 0. If 2k2 > al h I then

RI a 4kw (A) -k 2

Ill. X and p. are complex conjugates: = h + ik, i=h - ik, k * 0. If 2k2 < al h I
then

w(A) IhI+ -2"

If C is a convex set in C which is closed, i.e., contains all its limit points, and
which is not all of C, then C is the intersection of all its supporting half-planes.
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This fact is geometrically evident and it is not difficult to prove. The geometry of
this situation is very useful in developing an algorithm for constructing W(A).
Theorem 2 provides us with one effective method for constructing W(A). The
present discussion will lead us to another such method. Thus, let W(A) be the
numerical range of an arbitrary A E Mn(C).

10
W(e A) L

2 (24)

The idea is simple: we want to construct a relatively dense set of support lines
for W(A). Then W(A) will be accurately depicted as the intersection of the
corresponding support half-planes. In fact, simply drawing a sufficiently dense
set of such support lines will define W(A) with great accuracy.
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(25)

W(A)

Of course, the problem is to devise a computationally reasonable method of
determining the support lines L. We will make our method depend on
computing the dominant eigenvalue of a sequence of appropriate hermitian
matrices. Thus let L be a fixed but arbitrary support line for W(A). Then perform

a counterclockwise rotation in the plane through an angle e chosen so that the
rotated image of L, call it Le , is perpendicular to the x-axis (see (24)). Clearly

each such support line L determines a unique L.. For a given 0, if we can

determine the equation for L., then the equation for L is obtained by elementary

geometry. Now, L. is a support line for W(eiA) = e' W(A). Write A(O) = e)A and

let H(9) and K(0) be the hermitian parts of A(O):

A(O) - H(9) + iK(O).

Then if u* ui,

u*A(e)u = u*H(O)u + iu*K(O)u

and
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Re uA(9)u = u* H(O)u.

Hence

max Re u*A(O)u - max u*H(e)u.
UOU1 UU1

But H(O) is hermitian and thus

max u *H(O)u = X(O)
U*Uu1

where X(O) is the largest eigenvalue of H(O). In fact, the maximizing u is an
eigenvector of H(O) corresponding to X(O). Assume that it is feasible to compute
A.(O). Then the equation of L. is obviously

x =()

or in complex number notation

Re z -=()

Now apoint z=I z le x +iy lies on the line L iff e z lies on the line L iLe, iff

Re ez = ()

Re e' z le Me
i(0 + V)

Re Iz liXO

I Zlcos(e + () =~)

IlcosqpcosO - Iz Isinp sine - ()
x cosO - y sine - X.(O). (26)

Thus (26) is the equation for L in rectangular coordinates. The line (26) is
known once 0 is specified and X(O) is computed. A sensible scheme might be
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to specify a sequence of N values of 0 of the form

k 2kn - k =0,1 ... ,N1

and construct the lines

Lk: x cosek-ysinek = (0 k), k = 0... N-1.

The method for depicting W(A) just described can also be used to determine the
numerical radius w(A). In fact, we can easily verify that

w(A) = max X(e).
e e [0, 2n)

Algorithm 1

The first algorithm is based on Theorem 1, Theorem 2, and Theorem 4.
Theorem 1 is the elliptical range theorem. Theorem 2 states that W(A) is the
union of the numerical ranges of all the real 2-square orthogonal compressions
of A. Theorem 4 is the explicit formula for w(A) of a 2-square matrix unitarily
similar to a real matrix. The algorithm approximates W(A) from the inside.

1 Generate a random o.n. pair of vectors, x and v
2. Compute Ax.
3. Apply the elliptical range theorem to Axv to obtain W(AXV)

4. Graph W(AXV)

5. Update w(A) with maximal value of w(Axv)

6. Goto 1.

The Macintosh has many built in ROM routines for drawing objects on the
screen. The routines that were used in this program were paintova and ineto.
The paintoval command draws an oval inside a specified rectangle. This
rectangle is situated in the plane with its sides parallel to the axes. Thus, it was
not possible to draw an inclined ellipse. The foci of the ellipse had to lie along
the real or the imaginary axis. This means that the eigenvalues of the 2-square
compressions of A had to be real or complex conjugates of one another. This
fact restricted our ability to quickly depict W(A) for an arbitrary complex matrix
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using this algorithm.

&M consists of generating a pair of o.n. vectors. This is done by randomly
generating two n-vectors with components e [-1, 1]. These two vectors are
checked to make sure their lengths are greater than 0 and then orthonormalized
using the Gram-Schmidt process.

Step consists of computing AXV. This is done by computing

[(Ax,x) (Av,x)1

(Avx) (Av,v) "

When it was necessary to compute a vector-matrix-vector product as above, the
operations were applied as follows:

(Ax,x) = (x*(Ax)).

consists of applying the elliptical range theorem to A xv. This entailed

computing the eigenvalues of AXV, rl and r2. The eigenvalues are computed by
solving the characteristic polynomial of A... These eigenvalues are the foci of
the ellipse which is the numerical range of A xv. Next, the value alpha is

computed. This is the length of the minor axis. Depending on the values of
alpha, rl, and r2, W(A xv) has different features and is graphed accordingly.

Step graphing W(AXV). If alpha = 0 then W(Axv) collapses to a line segment
joining rl and r2. If this is the case W(Axv) is drawn using a straight line.

If rl and r2 are complex conjugates, alpha > 0, then W(AxV) is situated in the

plane with its major axis parallel to the imaginary axis.

If rl an r2 are real, alpha > 0, then W(Ax.) is situated in the plane with its major

axis along the real axis.

After each W(AXV) is drawn, it is checked to see whether any of its points are

either the topmost, bottommost, leftmost, or rightmost points in W(A) exhibited so
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far. After each iteration, the convex polygon is drawn connecting these four
extreme points. This speeds the approximation of the convex hull of A from
inside.

To illustrate this, suppose we are trying to approximate the numerical range of
the matrix

0 1 0

A= 0 0 1

1 0 0 -

We know that W(A) is a triangle (A is normal and its numerical range is the
convex hull of its eigenvalues). After two iterations we may have two ellipses
situated as depicted below, that approximate the triangle from the inside. If we
connect the extreme points on the ellipses we get a closer approximation to
W(A). Joining the extreme values is performed at every iteration past the first
one.

topmost

W(A)

rightmost

leftmost

bottommost

Stop update w(A). Theorem 4 provides us with a closed form formula for

evaluating w(A) for a 2-square matrix unitarily similar to a real matrix. The
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theorem has three alternatives: I) the eigenvalues are real; II) the eigenvalues

are complex conjugates of one another, h ± ik and 2k 2 a I h 1; and III) the
eigenvalues are complex conjugates, h ±1 ik, and 2k2 < a I h I. The conditions of
the theorem are checked against the eigenvalues, rl and r2, and alpha to see
which case holds. Then the value of w(Axv) is computed. This is compared to

the maximum value to date, and the maximum value is updated if necessary.

Step 6 - Goto Step 1. This program has no set stopping criteria. It is
programmed to run indefinitely. Theorem 2 states that W(A) is the union of all
W(Axv) and x and v are being generated randomly. When the image of W(A)

appears to have stabilized into a convex shape then it is interrupted.

Algorithm 2

The second algorithm is based the fact that the numerical range is a convex set.
It implements the algorithm that visualizes W(A) as the intersection of half-
spaces of support lines. The algorithm approximates W(A) from the outside.

The algorithm goes as follows:

1. Determine an angle y
2. n 4- trunc (2, y + 0.5)
3. forj := 0 to n do

1. e-j*y

2. H(O) +- (e' A + e-ie (A*))/2

max (H(O))
4. maxw +- max(w, maxw)
5. graph the support line corresponding to max (H(O))

Unlike the implementation of Algorithm 1, this algorithm is able to exhibit W(A)
for an arbitrary complex matrix. It is not restricted to matrices that are unitarily
similar to a real matrix.

Stop 1. The user is able to enter any choice for y e (0, 2n].

Stop 2. Here we compute the number of iterations for the program. This is
unlike the first algorithm. This program will terminate after a predetermined
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number of iterations with an outer approximation to W(A) and an upper bound
for w(A). The smaller the angle y specified, the more iterations and the better
the approximation to W(A).

.teI3.. Each successive angle 0 is computed.

Step_3-2. H(e), the hermitian part of eeA, is calculated.

S . The power method is run on H(e) to determine its largest eigenvalue.
The version of the power method implemented here is the Rayleigh Quotient
method. This method will find the largest eigenvalue in modulus of the given
matrix. For this algorithm the rightmost eigenvalue is required. To get around
this problem the matrix Twas computed, T = H(O) + 11 H(O) I11* In. (Here II A Ill is

n

the 1-norm, max 1I a1 i I i = 1, ... , n.) This ensures that T is a positive semi-i j.1

definite-matrix (X i Z 0, i - 1, ..., n). Thus the rightmost eigenvalue of T is the

eigenvalue of maximum modulus. The rightmost eigenvalue of H(O) was
computed by X m(H(O)) =;. m(T)- I H(e) 111.

Sa .. The maximum of the values X max(H(O)), 0 e [0, 2n], is an

approximation to the numerical radius of A. This value is maximized at every
iteration.

S . The equation of the support line at the point e';Lmax (H(0)), rotated

counterclockwise through e, is x = Xmax(H(O)). Thus the equation of the support
line itself is

x cos 0 - y sin 0 = X(H(O)).

A problem was encountered with the implementation of this algorithm. In Step
3.3 when the power method is applied, an initial estimation, x0 , of an

elgenvector is required. Originally, the code was written so that xo = [1, .... 11T

This presented no problem with the majority of examples for which the algorithm
was tested. But the program consistently failed for any doubly stochastic matrix.
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1~
This failure can be explained however, the simplest solution computationally is
to generate a random starting vector.

Nilpotent Matrices

Using the visualization algorithms it is easy to construct examples of nilpotent
matrices whose numerical ranges are disks centered at the origin. The
question arises: what are necessary and sufficient conditions on a nilpotent A
so that W(A) is a disk centered at the origin?

Let A to be an arbitrary n-square matrix. There is no loss in generality in
assuming that 0 e W(A).

Theorem 5. Let A - H + i K be the hermitian decomposition of A. Let X(O) be

the maximum eigenvalue of

cos 0 H -sin 0 K (27)

If 0 e W(A) then W(A) is a disk centered at the origin iff the maximum

eigenvalue .(O) of (27) is independent of 0, 0 < 0 < 2n.

Theorem 6. Let A be an n-square real nilpotent matrix. For n = 3, W(A) is a disk
centered at the origin iff

tr((A2) A) = 0.

For n - 4, W(A) is a disk centered at the origin iff

tr((A2)TA) - 0

and

tr((A3)TA) = 0.

Research is currently underway to extend Theorem 6 to general n-square
matrices.
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Normal Matrices and Symmetry

Let A be a linear operator on a finite dimensional unitary space V of dimension
n. The kth higher numerical range of A, denoted by Wk(A), is the totality of
complex numbers tr(PAP) where P runs over all k-dimensional orthogonal
projections on V. Very recently [490] we were able to prove that Wk(A) is
polygon with the real axis as a line of symmetry, k = 1, ..., n, if and only if A is
normal with a real characteristic polynomial. We also constructed several
nonnormal examples to investigate the extent to which the symmetry of all the
Wk(A) is required.

Visualization of the Numerical Range

As an example of the use of the visualization algorithms described above,
consider the following problem. Is it the case that

Wk(A) - Wk(B), k = 1...,n (28)

suffice to conclude that the two n-square matrices A and B are unitarily similar?
Recall that

Wk(A)= z I z = x(Ax), x,, ...,xko.n.},
ij.1

so that W,(A) is simply W(A). To investigate this conjecture we take n - 3 and
then directly confirm that the conditions (28) are equivalent to

W(A) - W(B), (29)

tr(A) = tr(B).

Consider the matrix
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3 i 0"

A- i 2 i

A 0 i 1

The visualization algorithm produces the following image for W(A).

3P 63 seconds.

Figure 1

The image of W(A) in Figure 1 is scaled by 2, which means that every entry in A
is divided by 2 before W(A) is computed.

Next consider the matrix 3 0
B= 0 2 0

62i 0 1
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62 socods,
AM) 1.500

Figure 2

The image of W(B) in Figure 2 is scaled by 2.

The numerical ranges of A and B are identical. We know that W(A) = W(B) is a
necessary but not sufficient condition for two matrices to be unitarily similar.
The matrices A and B are not unitarily similar. To explain how these matrices
can have the same numerical range and not be unitarily similar we present the
following discussion.

First consider matrix A. Define the matrix3 io 0 2 o 0 io0
C = A-213 i 2 i 0 2 0 i 0 i

0 i 1 .0 0 2 .0 i -1

The matrix C has a unique decomposition into real and imaginary parts, Hc and
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Kc , both symmetric:

C Hc+iK c

C* C*
C+c .C-C

2 +1 2

1 0 0 [0 1 0]

=. 0 0 0 + i 1 0 1 .

0 0 -1 .1 0 1 0j

For a general matrix, H + 1K, Algorithm 2 graphs the support lines

x cos 0 - y sin = X(e)

where (O) is the largest eigenvalue of H(O) - cos 0 H - sin 0 K. We compute
from above that for C,

cos0 -sine 0 1
cos0H c -sin0 Kc =  sinO 0 -sinO

0 -sine -cosO

The characteristic polynomial of the preceding matrix Hc(e) is

. + [-2 sin - cos2 O]. - sin 2cos e + sin 2cos 0] = 0,

or

. [1 + sin 2e] - 0.

Solving for X we obtain

±i + n2
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Thus

X(e) - J1 sin2.

Now consider the matrix B. Note that B is unitarily (permutation) similar to the
matrix

2 0 0
B'=0 3 2i.

0 T/2"i 1

Define the matrix

0 0 01
D =B'- 21 3 =0 1 T2 i

Im

0 T2 i -1

As above, D H HD + io for some unique hermitfan H D and KD:

H D + _* 1 0

0 -1

and

0 
0 

0
KD D - D*i 20

0 1 O0

To graph W(B) using the second visualization algorithm, the lines
x cos 0- y sin 0 - X(O) are graphed where (G) is the largest eigenvalue of

64



H(O) =cos 0 H - sin e K. For B',

HD(O) - cos 0 HD - sin 0 KD
0 0 0

S0 -cose -T2sinO

- q2 sn6 - cos e

The characteristic polynomial of HD(O) is

X2 + [-cos2e - 2 sin ] = 0,

or

+Cos 02- sin20 -sin2] = 0,

or

= 1 +sin 2.

Solving for X we have

= l sin2().

Thus

X.(e) = 1J + sinZ9.

Hence the support lines are the same for W(D) and W(C). But W(A) = W(C) + 2
and W(B) - W(D) + 2, and thus W(A) - W(B). The important thing to note here is
that the matrices A and B have the property that

X(9) - kmax(COS 9 H - sin 9 K)
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is the same for all 9 for both A and B. If we denote the maximum eigenvalue of

the hermitian part of e9A by X A(0) (and similarly for X8 (0)) then the geometric

condition

)LA(O) = ;.e(O) for all 0 e 0, 21]

is not equivalent to the algebraic condition that A is unitarily similar to B.

If A and B were unitarily similar then U*AU = B would imply that

U *HAU = He,

and

U*KAU = Ke.

Hence if A were unitarily similar to B then C = A - 213 would be unitarly similar to

D = B' - 213. Thus we can work with the matrices C and D in our discussion.

Consider

U HDU = HC (30)

and

U*KDU = Kc. (31)

From (30) we can solve the system for the matrix U:

HDU = UHc ,
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0 1 0 U=U 0 0 0,

-0 0 -1 0 0 -1

0 0 0 u11  0 U13

U2 1  U22  U2 3  = U2 1  0 "U2 3

L U3 1  - U3 2  "U33 U3 1  0 U33 J

The above equalities lead to u 1 = u 13 = u 22 = u23 = u 3 2 =u 3 1 =0. So, if a unitary

U exists satisfying (30) and (31) then it must have the form

0 u12  0

U U21 0 0 (32)

0 0 u33

From (31) we have the equalities

KDU = UKc ,

-0 0 0 0 u12  0 0 1 0

0 0 1 u21 0 0 =u21 0 0 1 0 1,

-0 1 0 L0 0 u 33 J L0 0 u33 0 1 0

0 0 0 U12  * *

T2 0 0 U33= 0 ,•.

U21 0 0 0 ,*

After we have computed the first column of the righthand side of the last
equality, we need go no further. The equality shows that u1 2 = 0. This fact

combined with (32) contradicts the unitary property of U.
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Open Questions

There is a nearly unlimited number of open questions in this field. However,
much current research is along the following general lines.

Let A:V -+ V be an operator on a unitary space V. Let X be a subset of V and
f:C -+ C be a complex function. Let M be a subset of C. Describe the set

W(A,X,M,f = {z I f((Ax, x))e M forallxE X}.

There are many variations on this question. For example, suppose
W(A, X, M, f) has certain geometric properties, e.g., symmetry with respect to
a line or a point, then what can be concluded about A?

Here are some simple instances of this type of question:

1. If A is nilpotent and W(A) is a disk, must it be centered at the origin?

2. If W(A) is a disk centered at the origin, is A nilpotent? The answer is "no":

0 1 O0

A= 0 0 0
0 0 0.1

3. If A and B are 3 x 3 and W(A) = W(B), W(A "') = W(B ") and tr(A) = tr(B), is it
true that A and B are unitarily similar? (W(A) = W(B) is not enough to
conclude that A and B are unitarily similar.)

A brief perusal of the bibliography in Section IV indicates the broad scope of
this research.
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IlL Research of M. Marcus, 1983 - 1988

On the equality of decomposable symmetrized tensors (with J. Chollet),
Linear and Multilinear Algebra, 13 (1983), 253-266.
This paper continues earlier work by the authors on finding necessary and sufficient

conditions for two decomposable symmetrized tensors to be equal. In the previous paper
[Unear and Multilinear Algebra 6 (1978), 317-3261 the linear independence of the vectors

forming such tensors was assumed. In the present paper, this assumption Is dropped and

much simpler req ilrements for equality are obtained. The paper also includes conditions

for a decomposable symmetrized tensor to be 0. This research Is related to recent work of
JA. Dias da Silva, R. Merris, S. Pierce, G.N. de Oliveira, and S.G. Wiliamson.

2. Solution to problem 6366, American Mathematical Monthly, 90 (1983,
409-410.

3. Products of doubly stochastic matrices (with K. Kidman and M. Sandy),
Linear and Multilinear Algebra, 15 (1984), 331-340.
In studying Westwick's theorem on higher numerical ranges, the theory of elementary

doubly stochastic matrices arises. This concept is related to the work of M. Goldberg and
E.G. Straus [Linear Algebra Appl, 18 (1912M, 1-24] on the representation of a doubly

stochastic matrix as a product of elementary doubly stochastic matrices. This paper studies
the class of doubly stochastic matrices that can be written as products of elementary

doubly stochastic matrices. The same questions for orthostochastic matrices are also

investigated.

4. Unitarily invariant generalized matrix norms and Hadamard product (with
K. Kidman and M. Sandy), Linear and Multilinear Algebra, 16 (1984), 197-
213.
Let 1I1 II be a unitarily invariant generalized matrix norm on Mn(C), the space of n-square

complex matrices. Theorems are developed relating the Hadamard product (entrywise

product) of two matrices A, B e Mn(C) to the singular values of A and B. For p a 1,

1 -k!5n, let

where za (A) a ... Z a (A) are the singular values of A. In this paper the following inequality
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is prved: 1 A B B 1l S 1A1 .B 1 u k:nit isasoproved that 11A.Bll-iA? ll1ll I

and only f A - a.Eil, and B, b E 4, where E is the matrix with I in position (ij) and zeros

elsewhere. The case k - 1 Is also discussed.

5. An exponential group, Linear and Multilinear Algebra, 14 (1984), 293-296.
Let M(r) be the n-squarm matrix whose (,j) entry is

ri- .

It is proved that the mapping r -- M(r) establishes an isomorphism from the additive group of

the real numbers Into the multiplicative structure of the n x n matrices. This paper

investigates M(r) as an exponential matrix.

6. Solution to problem 6430 (with J. Bruno), American Mathematical Monthly,
92 (1985), 148-149.

7. Conditions for the generalized numerical range to be real (with M. Sandy),
Unear Algebra and Appl., 71 (1985), 219-239.
If A and C are n-square complex matrices then the C-numerical range of A is the totality of

numbers tr(CU*AU) as U varies over all unitary matrices. This paper obtains necessary and

sufficient conditions for the C-numerical range of A to be a subset of the real axis. The

principal condition is that both A and C must be translates of Hermitian matrices.

8. Ryser's permanent identity in symmetric algebra (with M. Sandy), Linear
and Multilinear Algebra, 18 (1985), 183-196.
The polynomial algebra over a field is canonically isomorphic to the symmetric algebra over

a vector space. Several identities expressing homogeneous polynomials in terms of sums

of powers of linear polynomials are exploited to obtain Rysers permanent identity

[Combinatorial Mathematics, MAA Carus Monograph No. 14, Wiley, New York, 1963 as

well as extensions of Identities due to Bebiano [Pacific J. Math., 101 No. 1, (1982), 1-91

9. Singular values and numerical radii (with M. Sandy), Linear and
Multilinear Algebra, 18, No. 3, (1985), 337-353.
The purpose of this paper is to prove the following result relating the singular values and

the numerical radius of a matrix: For any n-square, complex matrix A with singular values

a 2.. k an a 0 and numerical radius r(A)
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n

with equality If and only I Alr(A) Is unitarily similar to the direct sum of a diagonal unitary
matrix and unit multiples of 2 x 2 matrices of the form1 d

Ld -1]

where O< I d I 1.

10. Construction of orthonormal bases in higher symmetry classes of tensors
(with J. Chollet), Unear and Multilinear Algebra, 19 (1986), 133-140.
A method Is presented for constructing an orthonormal basis for a symmetry class of
tensors from an orthonormal basis of the underlying vector spaces. The basis so obtained
Is not composed of decomposable symmetrized tensors. Indeed, we show that, for
symmetry classes of tensors whose associated character has degree higher than 1, it is
impossible to construct an orthogonal basis of decomposable symmetrized tensors from
any basis of the underlying vector space. The paper poses an open problem on the
possibility of a symmetry class having an orthonormal basis of decomposable symmetrized
tensors.

11. Computer generated numerical ranges and some resulting theorems (with
C. Pesce), Unear and Multilinear Algebra, 21 (1987), 121-157.
The numerical range, W(A), of an arbitrary n-square matrix A is the union of the numerical
ranges of all 2-square real compressions of A. As a result, a simple graphics program is
written that accurately exhibits W(A) for real A, and suggests several conjectures relating
the geometry of W(A) to algebraic properties of A. Some of these conjectures are
analyzed in the final sections of the paper.

12. Solution to problem 1231, Mathematics Magazine, 60 No. 1 (1987), 42.

13. Vertex points in the numerical range of a derivation (with M. Sandy),
Unear and Multilinear Algebra, 21 (1987), 385-394.
This paper contains a number of results on the distribution of values of subdeterminants of
normal matrices. It is a continuation of eadler work of M. Marcus [Indiana University Math. J.,
22 (1973), 1137-1149].
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14. Solution to problem E3179, submitted to American Mathematical Monthly.

15. Solution to problem 1248, A Curious property of 1/7, (with C. Pesce),
Mathematics Magazine, 60 (1987), 42.

16. Two Determinant Condensation Formulas, Unear and Multilinear Algebra,
22 (1987), 95-102.
This paper corrects and extends several classical results that express the determinant of a
block matrix In terms of determinants of the constituent blocks.

17. Symmetry properties of higher numerical ranges (with M. Sandy), Unear
Algebra and Appl., 104 (1988), 141-164.

Let A be a linear operator on a finite dimensional unitary space V of dimension n. The kth

higher numerical range of A, denoted by Wk(A), is the totality of complex numbers tr(PAP)

where P runs over all k-dimensional orthogonal projections on V. It is proved that Wk(A) is
polygon with the real axis as a line of symmetry, k - 1, ..., n, if and only if A is normal with a
real characteristic polynomial. Several non-normal examples are exhibited that reveal the
extent to which the symmetry of all the Wk(A) Is required.

18. Advanced problem, Triangular Kronecker Products, (with C. Pesce),
accepted for publication, American Math. Monthly.

19. Bessel's inequality in tensor space (with M. Sandy), Linear and Multilinear
Algebra, in press.
Let A be an n-square complex matrix and define AA to be the ni-square matrix whose

entries are

n

i-i

where a and r run lexicographically over Sn. If A is positive definite Hermitan and X is a unit

nl-tuple then

(AAX y) > det(A) + I Y, )do 12 c(A)

where c(A) Is the largest of the numbers
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and the summation is over C S For n 3 A is not pepromation similar to a direct sumn

and Z Is a unit n-tuple then (AA, X) -det(A) iff Is a multiple of the alternating character.

The relationships among recent results of Bapat and Sunder, Chollet, and Gregorac and
Henzel a r also discussed.

20. A unified approach to some classica matrix theorems, submitted.
An elementary ineaity Is proved that obtains the lower bound of the product of forms

(Ax,x) (A5x,x), where x Is a unit vector and A is a positive definite Hermitian matric. Using
this inequtality it is possible to provide a unified treatment of the following theorems: the

Hadamard determinant theorem; the Fischer inequality; the Kantorovich inequality; Weyr's

inequalities.

Books

1. Discrete Mathematics: A Computational Approach Using BASIC,
Computer Science Press, Rockville, Maryland, 1983.

2. MacAlgebra, Basic Algebra on the Macintosh (with R. Marcus and C.

Baczynski), Computer Science Press, Rockville, Maryland, 1986.

3. An Introduction to Pascal and Precalculus, Computer Science Press,
Rockville, Maryland, 1986.

4. Computing Without Mathematics: BASIC, Pascal, Applications (with J.
Marcus), Computer Science Press, Rockville, Maryland, 1986.

5. Introduction to Linear Algebra (with H. Minc), Dover Publications Inc., New
York, 1988.

6. Foundations of Numerical Linear Algebra 1, Center for Computational
Sciences and Engineering, University of California, Santa Barbara,
Monographs in Scientific Computation, 1988.
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Science Citation Index

A search was recently conducted of the Science Citation Index for the total
number of references to the work of M. Marcus since 1983. Self references
were excluded in the search criteria. The number of such citations is 593.

IV. Numerical Range Bibliography

The following pages contain a printout of the Numerical Range Bibliography. It
is sorted alphabetically by the first author.
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V. Appendix

VITA

PERSONAL BACKGROUND

Born: Albuquerque, New Mexico, July 31, 1927

Education: Attended public schools in California

Military Service: United States Navy, 1944-1946,
honorable discharge

Married: Rebecca Elizabeth Marcus

Children: Jeffrey (employed, Micropoint, Los Angeles)

Karen (Ph.D. student, Stanford University)

Academic Degrees:

1950 B.A. (highest honors in Mathematics) University of
California, Berkeley

1953 Ph.D. University of California, Berkeley

PROFESSIONAL EXPERIENCE

1987 - present Professor of Computer Science, UCSB

1983-1987 Professor of Mathematics and Computer Science,
University of California, Santa Barbara

1979 - present Founder, Microcomputer Laboratory,University of
California, Santa Barbara

1978-1986 Associate Vice Chancellor and Dean, Research and
Academic Development, University of California, Santa
Barbara
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1973- 1979 Director, Institute for the Interdisciplinary Applications of
Algebra and Combinatorics,University of California, Santa
Barbara

1963-1968 Chairman, Department of Mathematics, University of
California, Santa Barbara

1962 - 1983 Professor of Mathematics, University of California, Santa
Barbara

1960-1961 Research Mathematician, U.S. National Bureau of
Standards, Washington, D.C.

1954-1961 Instructor, Assistant and Associate Professor of
Mathematics, University of British Columbia

UNDERGRADUATE ACADEMIC ACTIVITIES

1964- 1972 Lecturer, National Science Foundation Linear Algebra
Conference for College Teachers, University of California,
Santa Barbara

1965- 1966 Lecturer, National Science Foundation In-service Institute
for Secondary School Teachers, University of California,
Santa Barbara

1965-1974 Visiting lecturer for the Mathematical Association of
America, touring four-year undergraduate institutions in the
far western area giving lectures on undergraduate
mathematics

1965 - present Author and co-author of 20 undergraduate textbooks (see
publication list)

1975 Principal Investigator, Summer Projects Grant and
Regents' Undergraduate Instructional Improvement Grant
for training Scientific Information Specialists, University of
California, Santa Barbara
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1979 - 1986 Established Microcomputer Laboratory at the University of
California at Santa Barbara, under grants from: the Fund
for the Improvement of Postsecondary Education;
California Postsecondary Education Commission;
Instructional Scientific Equipment Program, NSF.

1979 - 1984 Principal Investigator, The Comprehensive Program, Fund
for the Improvement of Postsecondary Education,
Curriculum Development Project in Applied Algebra

1979 - 1984 Program Director, Intensive Short Course in Basic College
Level Mathematics for Adult Reentry Women under grants
from the California Postsecondary Education Commission
and The Development in Science Education Project of the
National Science Foundation

1987- 1988 Principal Investigator, National Science Foundation Grant,
Computing and Algorithmic Mathematics for Secondary
School Teachers

GRADUATE ACADEMIC ACTIVITIES

1964 - present Author and co-author of four graduate textbooks

1970 Ford Foundation Visiting Distinguished Professor,
University of Islamabad, Islamabad, Pakistan; Consultant
on curriculum design at the new Pakistan National
University

1971 Visiting Lecturer, University of Victoria, Victoria, British
Columbia; Assist in the graduate program

1973, 1977 Director, Conferences on Matrix Theory, sponsored by the
National Science Foundation, University of California,
Santa Barbara

1974 Visiting Distinguished Professor, Laval University,
Quebec, Canada; assist in the graduate program
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GRADUATE STUDENTS

The following mathematicians have completed their Ph.D. work under
the direction of M. Marcus:

Dr. Roy Westwick, Professor
University of British Columbia
Vancouver, B.C., Canada
Thesis: Unear transformations of Grassmann algebras
1960

Dr. Nisar A. Khan, Professor
Muslim University, Aligarh, India
Thesis: Matrix commutators
1961

Dr. Peter Botta, Assoc. Professor
University of Toronto
Toronto, Ontario, Canada
Thesis: Unear transformations on algebras
1965

Dr. Stanley G. Williamson, Professor
University of California
San Diego, California
Thesis: Tensor Algebras
1965

Dr. William R. Gordon, Professor
Department of Mathematics
University of Victoria
Victoria, B.C., Canada
Thesis: Inequalities for generalized matrix functions
1965

Dr. George Soules
Institute for Defense Analysis
Princeton, New Jersey
Thesis: Combinatorial functions
1966
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Dr. Paul J. Nikolai, Mathematician
Wright-Patterson Air Force Base
Thesis: Mean value properties of generalized matrix functions
(This thesis was supervised jointly with Professor H. J. Ryser (deceased),
California Institute of Technology)
1966

Dr. Stephen J. Pierce, Professor
California State University
San Diego
Thesis: Generalized isometries
1968

Dr. William Watkins, Professor
California State University, Northridge
Northridge, California
Thesis: Inequalities for derivation operators on a tensor space
1969

Dr. Russell Merris, Professor
California State University at Hayward
Hayward, California
Thesis: A generalization of the associated transformation
1969

Dr. Mohammad Shafqat Ali, Assoc. Professor
California State University at Long Beach
Long Beach, California
Thesis: Additive commutators, Jordan products and bilinear functions
1970

Dr. Elizabeth Wilson, Mathematician
Naval Labs. Pt. Mugu, California
Thesis: Partial derivations on symmetry classes of tensors
1971
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Dr. James Holmes, Assistant Professor
Westmont College
Santa Barbara, California
Thesis: Application of derivations to invariance problems
1971

Dr. Herbert Robinson, Professor
Department of Mathematics
Texas A & M University
College Station, Texas
Thesis: Quadratic & bilinear forms on symmetry classes of tensors
1975

Dr. Patricia Andresen
University of Alaska
Fairbanks, Alaska
Thesis: The finite dimensional numerical range
1976

Dr. Robert Grone
University of Auburn
Auburn, Alabama
Thesis: Isometries of Matrix Algebras
1976

Dr. Ivan Filippenko, Research Mathematician
Lockheed Aircraft
Los Angeles, California
Thesis: Higher and Decomposable Numerical Ranges
1977

Dr. John Chollet, Assistant Professor
University of British Columbia
Vancouver, British Columbia, Canada
Thesis: Equalities of decomposable symmetrized tensors
1979
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Dr. Kenneth Moore
Radar Systems Group
Hughes Aircraft Co.
El Segundo, California
Thesis: Determinantal Inequalities
1980

Dr. Kent Kidman
Hughes Aircraft Co.
El Segundo, California
Thesis: Stochastic Matrices and unitarily Invariant Norms
1983

Claire Pesce
Naval Weapons Center, China Lake
China Lake, California
Thesis: Visualization of the Numerical Range
1988

ACADEMIC AWARDS AND DISTINCTIONS

1950 Graduated highest honors in mathematics, University of
California, Berkeley

1954 Fulbright Award

1956-57 National Research Council, National Science Foundation,
Post-doctoral Research Fellowship

1956, 1958-60, National Science Foundation Research Grants
1975-84

1962 Certificate of Award for Distinguished Service, U.S.
Department of Commerce, National Bureau of Standards

1962 - present Principal Investigator on Air Force Office of Scientific
Research grants
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I
1965 Mathematical Association of America Editorial Prize for the

article entitled: "inear Transformations on matrices"

1966 L.R. Ford Memorial Prize awarded by the Mathematical
Association of America for the article, "Permanents"

EDITORIAL ACTIVITIES

1. Mathematics Editor, Computer Science Press

2. Editor, Linear and Multilinear Algebra, published by Gordon and Breach,
Science Publishers Inc.

3. Associate Editor, Linear Algebra and Its Applications, Elsevier Science
Publishing Co., Inc.

4. Member of the Editorial Board, Pure and Applied Mathematics Series,
Marcel Dekker, Inc.

5. Editor, Linear Algebra Volumes of Encyclopedia of Applicable
Mathematics, Addison-Wesley Publishing Co.

6. Member of the Editorial Board, Linear Algebra and Its Applications

7. Associate Editor, Advanced Problem Section, American Mathematical
Monthly

8. Referee and Reviewer for the following journals:

Linear and Multilinear Algebra
Linear Algebra and Its Applications
Duke Journal
Proceedings of the AMS
Transactions of the AMS
Bulletin of the AMS
Mathematical Reviews
Memoirs of the MAA
American Mathematical Monthly
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!anadI J I Mathematis

Canadian Journal of Mathematics
Pacific Journal of Mathematics

Proceedings of the Cambridge Philosophical Society
Zentralblatt

9. Technical reviewer for the Air Force Office of Scientific Research

10. Technical reviewer for the Mathematics Divisioi of the National Science
Foundation

11. Technical reviewer for the National Research Council of Canada

12. Technical reviewer for United States-Israel Binational Science
Foundation

13. Editorial advisor for the following publishers:
Houghton-Mifflin Company
W.A. Benjamin, Inc.
Harcourt, Brace and World

14. Advisory Editor, Letters in Linear Algebra

15. Editorial Board, Algebras, Groups, and Geometries

SELECTED INVITED PAPERS

1963 International Conference, "Recent Advances in Matrix Theory", U.S.
Army Research Center, Madison, Wisconsin

1965 Far-Western meeting of the Mathematical Association of America

1965 Invited speaker, Annual meeting of the American Mathematical
Society

1965, 1967, 1969
Symposium on Inequalities, sposored by Aerospace Resarch
Laboratories, U.S. Air Force
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1967 International Symposium on Combinatorial Analysis, sponsored by
the Society for Industrial and Applied Mathematics

1972 Conference on Numerical Algebra, Los Alamos Scientific Laboratory

1974 University of California, Los Angeles

1975 University of Chicago, Chicago, Illinois

1975 University of California, San Diego

1975 California State University of Hayward

1975 AMS meeting, Kalamazoo, Michigan, Special Session on Matrix
Theory

1975 California Mathematical Council Conference, Asilomar, California

1976 Northern California Section of the MAA annual meeting, University of
California, Davis

1977 Gatlinburg VII, Conference on Numerical Algebra

1978 New York Academy of Science, Second International Conference on
Combinatorial Mathematics

1980 California Institute of Technology Colloquium Series

1980 Oberwolfach Conference on General Inequalities

1981 Conference on Numerical Algebra, Oxford University

1982 Mid Atlantic Conference on Educational Computing, Bennett College,
Greensboro, N.C.

1984 Invited contribution Special Issue of Linear Algebra and Its
Applications honoring Helmut Wielandt

1986 University of California, Riverside
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1986 University of California, San Diego

1986 Conference on Computers and Mathematics, Stanford University

1986 Western Educational Computing Consortium, Irvine

1988 SIAM Conference on Applied Linear Algebra, Madison Wisconsin

MEMBERSHIP IN LEARNED SOCIETIES

American Mathematical Society

Mathematical Association of America

American Association of University Professors

Sigma Psi; Pi Mu Epsilon

American Association for the Advancement of Science

Washington Academy of Science

Society for Industrial and Applied Mathematics

Society for Technical Communication

Association for Computing Machinery

UCSB UNIVERSITY SERVICE

Associate Vice Chancellor, Research and Academic Development. (1979 -
1987)
The following units reported to this office:

ACTER
Intructional Development/Learning Resources
Microcomputer Laboratory
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Off Campus Studies
University Center at Ventura
University Extension
Algebra Institute
Center for Black Studies
Center for Chicano Studies
Community and Organization Research Institute
Computer Systems Laboratory
Intercampus Institute for Research at Particle Accelerators
Institute for Polymers and Organic Solids
Institute of Environmental Stress
Marine Science Institute
Quantum Institute
Social Process Research Institute

Numerous ad hoc personnel review committees

1962 - 1963 Chairman, Statistics Committee

1962 - 1963 Academic Senate Educational Policy Committee

1962 - 1963 Chairman, Computer Committee
1964- 1965

1963 - 1964 Digital Computer Committee

1969 - 1972 Academic Senate Research Committee
1975-1977 &

1970 - 1972 Academic Senate Education Abroad Committee

1973- 1974 Chairman, Undergraduate Committee

1973 - 1974 Computer Science Laboratory Director Search Committee

1974 Chancellor's task force on career development

1974 - 1975 Academic Senate Athletic Policy Committee
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1975 Ad Hoc Committee for Scientific Communication

1979 - 1986 Coordinator, Chinese Exchange Program

1988 - Present Computing Task Force

PROFESSIONAL REFERENCES

Professor Stephen P. Diliberto
Department of Mathematics
University of California
Berkeley, California 94720
(415) 642-6550

Professor Ky Fan, Emeritus
Department of Mathematics
University of California
Santa Barbara, California 93106
(805) 961-2171

Professor Marshall Hall
Department of Mathematics
Emory University
Atlanta, Georgia 30322
(404) 727-5605

Raymond Huerta, Coordinator
Affirmative Action
University of California
Santa Barbara, California 93106
(805) 961-2089

Professor Robert A. Huttenback
Former Chancellor
2661 Todos Santos
Santa Barbara, California 93105
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Professor Robert Mehrabian
Dean, College of Engineering
University of California
Santa Barbara, California 93106
(805) 961-3141

Professor William H. Meyer, Emeritus
Administrative Head
Department of Mathematics
University of Chicago
Chicago, Illinois 60637
(312) 962-7100

Professor Henryk Minc
Department of Mathematics
University of California
Santa Barbara, California 93106
(805) 961-2171

Professor Benjamin N. Moyls, Emeritus
Department of Mathematics
University of British Columbia
Vancouver, British Columbia, CANADA
(604) 228-2848

Professor Morris Newman
Department of Mathematics
University of California
Santa Barbara, California 93106
(805) 961-2171

Professor Gian-Carlo Rota
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
(617) 253-4381
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Professor Hans Schneider
Department of Mathematics
University of Wisconsin
Madison, Wisconsin 53706
(608) 263-3053

Professor David S. Simonett
Dean, Graduate Division
University of California
Santa Barbara, California 93106
(805) 961-2013

Professor David A. Sprecher
Dean, College of Letters and Science
University of California
Santa Barbara, California 93106
(805) 961-3506

Professor Olga Taussky-Todd
Department of Mathematics
California Institute of Technology
Pasadena, California 91125
(818) 356-4332

Professor Stanley G. Williamson
Department of Mathematics
University of California

at San Diego
La Jolla, California 92037
(714) 452-3590
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EXTRAMURAL SUPPORT

Air Force
Multilinear Algebra
M. Marcus, H. Minc
10/01166 - 09/30/67 $51,436

Air Force
Multilinear Algebra
M. Marcus, H. Minc
10/01/67 - 09/30/68 $61,610

Air Force
Multilinear Algebra
M. Marcus, H. Minc
10/01/68 - 09/30/69 $60,297

Air Force
Multilnear Methods
M. Marcus, H. Minc
10/01/69 - 09/30/70 $62,270

Air Force
Multilinear Methods
M. Marcus, H. Minc
10/01/70 - 09/30/71 $60,416

Air Force
Eigenvalue Investigators and Stability
R.C. Thompson, M. Marcus, H. Minc
10/01/71 - 09/30/72 $44,606

Air Force
Inequalities, Combinatorics and Applications
M.Marcus, H. Minc, R.C. Thompson
10/01/72 - 09/30/73 $42,961
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Air Force
The Algebraic Eigenvalue Problem with Applications
M. Marcus, H. Minc, R.C. Thompson
10/01/73 - 09/30/74 $36,079

National Science Foundation
Theoretical Matrix Theory
M. Marcus
10/15/73 - 10/14/74 $12,100

Air Force
Supplementary Request
M. Marcus, H. Minc, R.C. Thompson
06/30/74 - 09/30/74 $ 7,435

Air Force
Algebraic Stability: A Unear Algebra Bibliography
M. Marcus, H. Minc, R.C. Thompson
10/01/74 - 09/30/75 $55,183

National Science Foundation
Undergraduate Research Participation
M. Marcus
02/15/75 - 05/31/76 $26,740

Air Force
Foundations of Stability, Unear Algebra Bibliography
M. Marcus, H. Minc, R.C. Thompson
10/01/75 - 09/30/76 $51,702

National Science Foundation
Computer Searchable Information Files
M. Marcus
07/01/76 - 12/31/78 $68,348

Air Force
Eigenvalue Problems in Stability Theory
M. Marcus, R.C. Thompson, H. Minc
10/01/76 - 09/30/77 $58,793
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National Science Foundation
Dissemination of Scientific Information
M. Marcus
09/07/77 - 01/31/79 $10,000

Air Force
Supplement to: The Localization of Eigenvalues
M. Marcus
10/01/77 - 09/30/78 $102,881

National Science Foundation
Research Conference on Linear Algebra
M. Marcus
11/01/77 - 10/31/78 $ 2,800

Air Force
Stability, Control and Numerical Linear Algebra
M. Marcus
10/01/78 - 09/30/79 $80,949

International Business Machines Corp.
Intensive Short Course in Basic College Mathematics
M. Marcus
08/01/79 - 09/30/80 $ 5,000
Air Force
Foundations of Eigenvalue Distribution Theory
M. Marcus et al
09/30/79 - 09/29/80 $84,143

Cal Post Secondary Education Commission
Intensive Short Course in Basic College Mathematics
M. Marcus
10/01/79 - 06/30/80 $33,000

Cal Post Secondary Education Commission
Intensive Short Course in Basic College Level Math
M. Marcus
07/01/80 - 09/30/81 $40,000
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Air Force
Elgenvalue Localization Techniques in Numerical Algebra
M. Marcus et al
09/30/80 - 09/30/81 $101,993

National Science Foundation
Microcomputer Equipment for Undergraduate Applied Mathematics
M. Marcus
10/15/80 - 09/30/83 $19,319

National Science Foundation
Intensive Computer Based Mathematics Training
M. Marcus
03/01/81 - 10/31/83 $192,012

National Science Foundation
Research Conference on Multilinear Algebra
R. Merms, M. Marcus
03/15/81 - 08/31/81 $ 7,550

Department of Education
A Program In Quantitative Decision Making
M. Marcus
09/15/81 - 09/14/84 $113,961

Air Force
Eigenvalues, Numerical Ranges, Stability Analysis
M. Marcus et al
09/30/81 - 04/30/83 $114,545

Air Force
Questions in Numerical Analysis / Associated Problems
M. Marcus, M. Goldberg
05/01/83 - 04/30/84 $57,515

Department of Education
A Program In Quantitative Decision Making
M. Marcus
05/01/83 - 09/14/84 $ 6,035
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Air Force
Stability Analysis of Finite Difference Schemes
M. Marcus, M. Goldberg
05/01/84 - 04/30 '85 $56,953

Air Force
Stability Analysis of Finite Difference Schemes
M. Marcus, M. Goldberg
05/01/85 - 04/30/86 $64,444

Air Force
Stability Analysis of Finite Difference Schemes
M. Marcus, M. Goldberg
05/01/86 - 04/30/87 $75,030

Air Force
Stability Analysis of Finite Difference Approximations to Hyperbolic Systems,
and Problems in Applied and Computational Linear Algebra
M. Marcus, M. Goldberg
5/1/8787 - 4/30/88 $73,693

National Science Foundation
Computing and Algorithmic Mathematics for Secondary School Teachers
M. Marcus, J. Bruno
3/11/87 - 8/31/89 $516,999

National Science Foundation
A National Institute for Secondary School Teachers for the Dissemination of
Computer Science and Algorithmic Mathematics
M. Marcus, J. Bruno, R. Mayer
2/1/88 - 8/31/89 $509,560

Air Force
Stability Analysis of Finite Difference Approximations to Hyperbolic Systems,
and Problems in Applied and Compuational Matrix Theory
M. Marcus, M. Goldberg
5/1/88 - 10/31/88 $78,114

TOTAL $3,046,472
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Publication List

RESEARCH PAPERS

1955

1. Field convexity of a square matrix (with B.N. Moyls), Proc. Amer. Math.
Soc. 6 (1955), 981-983.

2. A remark on a norm inequality for square matrices, Proc. Amer. Math.
Soc. 6 (1955), 117-119.

3. Some results on the asymptotic behavior of linear systems, Canad. J.

Math. 7 (1955), 531-538.

4. Boundedness of a continuous function, Amer. Math. Monthly 62 (1955).

1956

5. An invariant surface theorem for a non-degenerate system.
Contributions to non-linear oscillations, Annals of Math. Study 36
(1956), 243-256.

6. A note on the existence of periodic solutions of differential equations
(with S.P. Diliberto), Annals of Math. Study 36 (1956), 237-241.

7. Repeating solutions for a degenerate system, Annals of Math. Study 36
(1956), 261-268.

8. On the optimum gradient method for systems of linear equations, Proc.
Amer. Math. Soc. 1 (1956), 77-81.

9. Extramural properties of Hermitian matrices (with J. McGregor), Canad.
J. Math. 8 (1956), 524-531.

10. An eigenvalue inequality for the product of normal matrices, Amer.
Math. Monthly 63 (1956), 173-174.
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1957

11. On the maximum principle of Ky Fan (with B. Moyls), Canad. J. Math. 9
(1957), 313-320.

12. Inequalities for symmetric functions and Hermitian matrices (with L.
Lopes), Canad. J. Math. 9 (1957), 304-312.

13. A note on symmetric functions of eigenvalues (with R.C. Thompson),
Duke Math. J. 24 (1957), 43-46.

14. A note on the values of a quadratic form, J. Wash. Acad. Sci. 47 (1957),
97-99.

15. Some extreme value results for indefinite Hermitian matrices I. (with B.
Moyls and R. Westwick), Illinois J. Math. 1 (1957), 449-457.

16. On subdeterminants of doubly stochastic matrices, Illinois J. Math. 1
(1957), 583-590.

17. A determinantal inequality of H.P. Robertson I!, J. Wash. Acad. Sci. 47
(1957), 264-266.

18. Maximum and minimum values for the elementary symmetric functions
of Hermitian forms (with B. Moyls), J. Lond. Math. Soc. 32 (1957), 375-
377.

19. Convex functions of quadratic forms, Duke J. Math. 24 (1957), 321-
326.

1958

20. Some extreme value results for indefinite Hermitian matrices II, (with B.
Moyls and R. Westwick), Illinois J. Math. 2 (1958), 408-414.

21. On a determinantal inequality, Amer. Math. Monthly 65 (1958), 266-
268.
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22. On doubly stochastic transforms of a vector, Quart. J. Math. Oxford 2

(1958), 74-80.

1959

23. On the minimum of the permanent of a doubly stochastic matrix (with M.
Newman), Duke J. Math. 26 (1959), 61-72.

24. Convexity of the field of a linear transformation (with A. Goldman),
Canad. Math. Bull. 2 (1959), 15-18.

25. Unear transformations on algebras of matrices (with B. Moyls), Canad.
J. Math. 11 (1959), 61-66.

26. All linear operators leaving the unitary group invariant, Duke J. Math.
26 (1959), 155-163.

27. Extremal properties of Hermitian matrices II (with B. Moyls and R.
Westwick), Canad. J. Math. 11 (1959), 379-382.

28. Linear transformations on algebras of matrices II (with R. Purves),
Canad. J. Math. 11 (1959), 383-396.

29. A note on the Hadamard product (with N. Khan), Canad. Math. Bull. 2
(1959), 81-83.

30. Transformations on tensor product spaces (with B. Moyls), Pacific J.
Math. 9 (1959), 1215-1221.

31. Diagonals of doubly stochastic matrices (with R. Ree), Oxford Quart. J.
Math. 10 (1959), 296-302.

1960

32. On matrix commutators (with N. Khan), Canad. J. Math. 12 (1960), 269-
277.

33. Space of k-commutative matrices (with N. Khan), J. Research Nat'l
Bureau of Standards 64B (1960), 51-54.
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34. Some properties and applications of doubly stochastic matrices, Amer.
Math. Monthly 67 (1960), 215-220.

35. A note on a group defined by a quadratic form (with N. Khan), Canad.
Math. Bull. 3 (1960), 143-148.

36. Unear maps on skew-symmetric matrices; the invariance of elementary
symmetric functions (with R. Westwick), Pacific J. Math. 10 (1960), 917-
924.

37. The maximum number of equal nonzero subdeterminants (with H.
Minc), Archiv. D. Math. 11 (1960), 95-100.

38. Permanents of doubly stochastic matrices (with M. Newman), Proc. of
Symposia in Applied Math. 10, Amer. Math. Soc., 1960.

39. On a commutator result of Taussky and Zassenhaus (with N. Khan),
Pacific J. Math. 10 (1960) 1337-1346.

40. On a theorem of I. Schur concerning matrix transformations (with F.

May), Archiv. D. Math. 11 (1960), 401-404.

1961

41. On the unitary completion of a matrix (with P. Greiner), Illinois J. Math.
5 (1961) 152-158.

42. Some generalizations of Kantorovich's inequality (with N. Khan),
Portugal. Math. 20 (1961), 33-38.

43. Another extension of Heinz's inequality, J. of Research Nat'l Bureau of
Standards 65B (1961), 129-130.

44. A note on normal matrices (with N. Khan), Canad. Math. Bull. 4 (1961),
23-27.

45. Symmetric means and matrix inequalities (with P. Bullen), Proc. Amer.
Math. Soc. 12 (1961), 285-290.
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46. Bound for the p-condition number of matrices with positive roots (with
P. David and E. Haynsworth), J. of Research, Nat'l Bureau of
Standards 65 (1961), 13-14.

47. The permanent function as an inner product (with M. Newman), Bull.
Amer. Math. Soc. 67 (1961), 223-224.

48. Comparison theorems for symmetric functions of characteristic roots, J.
of Research Nat'l Bureau of Standards 65 (1961),113-116.

49. Some results on non-negative matrices (with H. Minc and B. Moyls), J.
of Research Natl Bureau of Standards 65 (1961), 205-209.

50. On the relation between the determinant and the permanent (with H.
Minc), Illinios J. Math. 5 (1961), 376-381.

1962

51. The sum of the elements of the powers of a matrix (with M. Newman),

Pacific J. Math. 12 (1962), 627-635.

52. Some results on doubly stochastic matrices (with H. Minc), Proc. Amer.
Math. Soc. 13 (1962), 571-579.

53. An inequality connecting the p-condition number and the determinant,
Numerische Mathematik 4 (1962), 350-353.

54. Unear operations on matrices, Amer. Math. Monthly 69 (1962), 837-
847.

55. The maximum number of zeros on the powers of an indecomposable
matrix (with F. May), Duke Math. J. 29 (1962), 581-588.

56. The permanent function (with F. May), Canad. J. Math. (1962), 177-
189.

57. Permanent preservers on the space of doubly stochastic matrices (with
B. Moyls and H. Minc), Canad. J. Math. 14 (1962), 190-194.
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58. Matrices in linear mechanical systems, Canad. Math. Bull. 5 (1962),
253-257.

59. The invariance of symmetric functions of singular values (with H. Minc),
Pacific J. Math. 12 (1962), 327-332.

60. The pythagorean theorem in certain symmetry classes of tensors (with
H. Minc), Trans. Amer. Math. Soc. 104 (1962), 510-515.

61. Hermitian forms and eigenvalues, article in Survey Numerical Analysis,
edited by J. Todd, McGraw-Hill, 1962, 198-313.

62. Inequalities for the permanent function (with M. Newman), Annals of

Math. 75 (1962), 47-62.

1963

63. Disjoint pairs of sets and incidence matrices (with H. Minc), Illinois J.
Math 7 (1963), 137-147.

64. Another remark on a result of K. Goldberg, Canad. Math. Bull. 6 (1963),
7-9.

65. Equality in certain inequalities (with A. Cayford), Pacific J. Math 2
(1963), 1319-1329.

66. The field of values of the Hadamard product, Archiv. D. Math. 14
(1963), 283-288.

67. Solution to advanced problem 5005 Rank of a Matrix, Amer. Math.
Monthly 70 (1963), 337.

68. The permanent analogue of the Hadamard determinant theorem, Bull.
Amer. Math. Soc. 69 (1963), 494-496.

69. Generalizations of some combinatorial inequalities of H. J. Ryser (with
W. R. Gordon), Illinois J. Math. 7 (1963), 582-592.

70. Compound matrix equations (with A. Yaqub), Portugal Math. 22 (1963),

143-151.
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1964

71. The Hadamard theorem for permanents, Proc. Amer. Math. Soc. 15
(1964), 967-973.

72. The minimal polynomial of a commutator, Portugal. Math. 25 (1964),
73-76.

73. Compounds of skew-symmetric matrices (with A. Yaqub), Canad. J.
Math. 16 (1964), 473-478.

74. Inequalities for subpermanents (with W.R. Gordon), Illinois J. Math. 8
(1964), 607-614.

75. The use of multilinear algebra for proving matrix inequalities, Proc. of
Conference on Matrix Theory, Univ. of Wisconsin Press, Madison,
Wisc., 1964.

76. Inequalities for mappings on spaces of skew-symmetric tensors (with
W.R. Gordon), Duke Math. J. 31 (1964), 691-696.

77. Inequalities for general matrix functions (with H. Minc), Bull. Amer.
Math. Soc. (1964), 308-313.

78. On two classical results of I. Schur, Bull. Amer. Math. Soc. 70 (1964),

685-688.

1965

79. Permanents (with H. Minc), Amer. Math. Monthly 72 (1965), 577-591.

80. Diagonal products in doubly stochastic matrices (with H. Minc), Oxford
Quart. J. Math. 16 (1965), 32-34.

81. Generalized functions of symmetric matrices (with M. Newman), Proc.
Amer. Math Soc. 16 (1965), 826-830.
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I

82. Matrix applications of a quadratic identity for decomposable
symmetrized tensors, Bull. Amer. Math. Soc. 71 (1965), 360-364.

83. A sub-determinant inequality (with H. Minc), Pacific J. Math. 15 (1965),
921-924.

84. Hamack's and Weyl's inequalities, Proc. Amer. Math. Soc. 16 (1965),
864-866.

85. Generalized matrix functions (with H. Minc), Trans. Amer. Math Soc.
116 (1965), 316-329.

1966

86. Permanents of direct products, Proc. Amer. Math. Soc. 17 (1966), 226-
231.

87. The Cauchy-Schwarz inequality in the exterior algebra, Oxford Quart.
J. Math. 17 (1966), 61-63.

88. A permanental inequality-the case of equality (with H. Minc), Canadian
J. Math. 18 (1966), 1085-1090.

89. An inequality for the elementary symmetric functions of characteristic
roots (with H. Minc), Proc. Amer. Soc. 17 (1966), 510-514.

90. On a classical commutator result (with R.C. Thompson), J. Math. and
Mech. 16 (1966), 583-588.

1967

91. Permutations on symmetry classes (with H. Minc), J. Algebra 15
(1967), 59-71.

92. Lengths of tensors, article in Inequalities, Academic Press, New York,
1967, 163-176.

93. Doubly stochastic associated matrices (with M. Newman), Duke J. of
Math. 34 (1967), 591-597.
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94. Some inequalities for combinatorial matrix functions (with G.W.
Soules), J. Comb. Theory 2 (1967), 145-163.

95. An inequality for linear transformations, Proc. Amer. Math. Soc. 18
(1967), 793-797.

96. On a conjecture of B.L. Van der Waerden (with H. Minc), Proc. Comb.
Phil. Soc. 63 (1967), 305-309.

97. A theorem on rank with applications to mappings on symmetry classes
of tensors, Bull. Amer. Soc. 73 (1967), 675-677.

1968

98. On a combinatorial result of R.A. Brualdi and M. Newman (with S.
Pierce), Canad. J. Math. 20 (1968), 1056-1067.

99. Extensions of the Minkowski inequality (with S. Pierce), Linear Algebra
and Appl. 1 (1968), 13-27.

100. Extensions of classical matrix inequalities (with H. Minc), Linear
Algebra and Appl. 1 (1968), 421-444.

1969

101. Elementary divisors of associated transformations (with S. Pierce),
Unear Algebra and Appl. 2 (1969), 21-35.

102. Matrices of Schur functions (with S. Katz), Duke Math. J. 36 (1969),

343-352.

103. Singular value inequalities, J. London Math. Soc. 44 (1969),118-120.

104. Symmetric positive definite multilinear functionals with a given
automorphism (with S. Pierce), Pacific J. Math. 31 (1969), 119-132.

105. Subpermanents, Amer. Math. Monthly 76 (1969), 530-533.
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106. Inequalities for some monotone matrix functions (with P.J. Nikolai),
Canad. J. Math 21 (1969), 485-494.

107. Inequalities for matrix functions of combinatorial interest, SIAM J. Appl.
Math. 17 (1969), 1023-1031.

108. Spectral properties of higher derivations on symmetry classes of

tensors, Bull. Amer. Math. Soc. 75 (1969), 1303-1307.

1970

109. Solution to advanced problem 63-2, SIAM Rev., 1970.

110. A generalization of the unitary group (with W.R. Gordon), Linear
Algebra and Appl. 3 (1970), 225-247.

1 1. Inequalities for submatrices, article in Inequalities-Il, Proceedings of
the Second Symposium on Inequalities held at the U.S. Air Force
Academy, Colorado, August 14-22, 1967, Academic Press, New York,
1970, 223-240.

112. Some results on unitary matrix groups (with M. Newman), Linear
Algebra and Appl. 3 (1970), 173-178.

113. An analysis of equality in certain matrix inequalities I (with W.R.
Gordon), Pacific J. Math 34 (1970), 407-413.

114. The structure of bases in tensor spaces (with W.R. Gordon), Amer. J.
Math. 92 (1970), 623-640.

115. Inequalities for matrix functions of combinatorial interest, article in
Studies in Applied Mathematics 4: Studies in Combinatorics, a
collection of papers presented by invitation at the Symposium on
Combinatorial Mathematics sponsored by the Office of Naval Research
at the Fall Meeting of SIAM at the University of California at Santa
Barbara, November 29-December 2, 1967, Philadelphia, 1970, 46-54.
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1971

116. Partitioned Hermitian matrices (with W. Watkins), Duke Math. J. 38,
(1971), 237-249.

117. On the degree of the minimal polynomial of a commutator operator
(with M.S. Ali), Pacific J. Math. 37 (1971), 561-565.

118. An extension of the Minkowski Determinant Theorem (with W.R.
Gordon), Proc. Edinburgh Math. Soc. 17 (1971), 321-324.

119. Linear transformations on matrices, J. Res. Math. Sci. Sect. Nat. Bur.
Stds., 75B (1971), 107-113.

1972

120. Antiderivations on the exterior and symmetric algebras (with R. Merris),
Linear Algebra and Appl. 5 (1972), 13-18.

121. A dimension inequality for multilinear functions, article in Inequalities-
Ill, Proceedings of the Third Symposium on Inequalities held at the
University of California, Los Angeles, September 1-9, 1969, Academic
Press, New York, 1972, 217-224.

122. An analysis of equality in certain matrix inequalities II (with W.R.
Gordon), SIAM J. Numer. Anal. 9 (1972), 130-136.

123. An inequality for Schur functions (with H. Minc), Linear Algebra and
Appl. 5 (1972), 19-28.

124. Minimal polynomials of additive commutators and Jordan products
(with M.S. Ali), J. Algebra 22 (1972), 12-33.

125. Groups of linear operators defined by group characteristics (with J.
Holmes), Trans. Amer. Math. Soc., 172 (1972), 177-194.

126. On projections in the symmetric power space (with W.R. Gordon),
Montash. Math. 76 (1972), 130-134.
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127. Rational tensor representations of Horn (V,V) and an extension of an
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